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SCINTILLATION: A POTENTIAL ETI DISCRIMINANT

* Radio waves interact with the inhomogenous
plasma of the ISM, resulting in scintillation
and broadening

* We readily observe these effects in dynamic
spectra of pulsars
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* A series of papers by Jim Cordes and Joe
Lazio characterized scintillation effects on
narrow-band radio signals (Cordes & Lazio

1991, 2002; Cordes, Lazio, Sagan 1997) 4040 30 20 10 0

* We claim that ISM scintillation could
be used as a novel discriminant for Figure 1. Left panel: Intensity vs. time for pulsar PSR
detecting technosignatures! 1933+16. Right panel: histogram of intensity values, showing

an exponential-like distribution (Cordes & Lazio 1991).
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SEARCH TECHNIQUE: MACHINE LEARNING

* We can visualize BL data as waterfall

plots (spectrograms), of intensity as a
function of frequency and time

* Major advances in machine learning
with respect to image classification
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» Computer vision techniques are good
at classifying images based on
morphological features
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*There is a lot of potential in machine
Figure 2. Simple example of ML classification

learning for identifying scintillation
g F)' g (between noise, constant intensity, or pulsed)
features! with a synthetic signal
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APPROACHING ML FOR NARROW-BAND SIGNALS
o .

* We don’t have any examples of ISM-
scintillated narrow-band signals, so we need to
generate our own!

* Created setigen, a Python module that

tacilitates the creation of synthetic data frames T

] | | 1) A
. . 2 | i 1)) i 1LAL
of varying complexity U AP

i {| | \ | |
I B LAY IV B

* Others have already used setigen for ML Thlti 'w At

experiments and injection recovery for signal A *
. . L
search pipelines! ol e
github.com/bbrzycki/setigen Figure 3. Top: synthetic scintillation signal.
Bottom: synthetic RFI signal.
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Narrow-Band SIGNAL LOCALIZATION (BRzYCKI ET AL. 2020, SUBMITTED)

o

* Finding signals in general data
frames is important in itself
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* Dedoppler search methods (such as
TurboSETI) struggle to find dim
signals in the presence of bright ones
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* ML potentially offers a method for
improving this
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* Localization of narrow-band signals Frequency (samples)

is a good starting problem because
it’s a relatively simple task; predict 2
numbers per signal

Figure 4. Example of a frame with 2 synthetic signals.
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Narrow-Band SIGNAL LOCALIZATION (BRzYCKI ET AL. 2020, SUBMITTED)

* Created data frames with a
primary bright “RFI” signal and a
dimmer drifted signal with
random slope
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* Explored multiple neural network

architectures -
[ Baseline Bright
. [ 1 Final
* Accuracy goes up with SNR, as = Fina Brigh
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eXPeCted Signal Intensity (dB)

e Even for SNR > ]OO, best models Figure 5. Mean squared error across different signal

: intensities, in pixels, for 2 signal case.
were close but not pixel-perfect
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BACK TO SCINTILLATION & FUTURE STEPS

* We have an observation plan for ML searches using scintillation as a
discriminant, focused around the galactic center

* We have a procedure for generating synthetic scintillated signals, based on
theory

*To do:
* Create ML dataset with injected synthetic scintillated signals
* Evaluate search procedure on galactic center pointings

e Compare ML localization procedure to the dedoppler search algorithm for
non-ideal RFI signals
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Thank you!
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Autoregressive to Anything
(ARTA)

® We need a method for generating
synthetic data that satisty these constraints:
® Exponential intensity distribution
® Gaussian autocorrelation, with FWHM
= scintillation timescale
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* Autoregressive to Anything (ARTA) is a
method for generating “stationary time
series [data] with arbitrary marginal

distributions and autocorrelation
structures” (Cario & Nelson 1996).

40 40 30 20 10 O

Number

Cordes & Lazio 1991
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Autoregressive to Anything

Fig. 1. Sample path of an ARTA process with exponential marginals and autocorrelations p; = 0.9 and p; = 0.6.

Cario & Nelson 1996 Our implementation
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SIGNAL LOCALIZATION IN SPECTROGRAMS
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in pixels, for 1 signal case (Brzycki et al. 2020, in pixels, for 2 signal case (Brzycki et al. 2020,
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