

BREAKTHROUGH LISTEN

A Narrowband Search for Scintillated Signals near the Galactic Center

BRYAN BRZYCKI UNIVERSITY OF CALIFORNIA BERKELEY BREAKTHROUGH ADVISORY, JUNE 27, 2023

Can we use astrophysical phenomena as a way to distinguish technosignatures from RFI?

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

ESA

Standard filters used for radio technosignature candidates

• Narrowband vs. astrophysical sources

• Non-zero drift rate vs. RFI

• Sky localization vs. RFI

Smith et al. 2021

Diffractive scintillation in the ISM

- Electron density fluctuations in ionized plasma creates interference pattern
- Can lead to 100% intensity modulation, especially towards the Galactic center, with characteristic temporal scales Δt_d

Cordes 2002

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

Why scintilation?

- A filter that directly implies extra-solar origin
- Well-suited for continuous or pulsed narrowband signals
- One of the best places to search for scintillation corresponds to one of the best places to look for ETI - the Galactic center

How might we detect scintillation? (Brzycki et al. 2023, accepted to ApJ)

- Estimate intensity time series from signals detected with deDoppler methods
- Since scintillation is stochastic, identify measurable statistics for asymptotic behavior
- Would existing RFI modulation confound real scintillation?
 - Methods for creating synthetic scintillated intensities
 - Compare statistics of detected signals with those of synthetic scintillated signals

Normalized intensity over time

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Diagnostic statistics

GBT RFI vs. synthetic scintillated signals

C band

Standard Deviation

Minimum

Kolmogorov-Smirnoff Statistic

Scintillation **Timescale Fit**

GBT RFI vs. synthetic scintillated signals

C band

Standard Deviation

Minimum

Kolmogorov-Smirnoff Statistic

Scintillation **Timescale Fit**

Planning Galactic Center observations — Monte Carlo sims with NE2001

- Estimate scintillation timescales with NE2001 (Cordes & Lazio 2002) and scale with different sets of parameters
 - Galactic coordinates
 - Distance
 - Frequency
 - Transverse velocities
- Monte Carlo sample to characterize the most probable scintillation timescales

(I, b) = (5, 0) at C-band

BREAKTHROUGH

LISTEN

Current observing plan for scintillation survey of the Galactic center

• Galactic plane survey: 54 pointings, with || < 5 deg, |b| < 2 deg

Current observing plan for scintillation survey of the Galactic center

Galactic center survey: 19 pointings (following Gajjar et al. 2021)

Current observing plan for scintillation survey of the Galactic center

- ABAB cadences
- 10 minutes per observation, so each pointing gets 20 minutes total
- 2.5 s, 2.8 Hz resolution
- Start each observing session with single pointing of North Galactic Pole as probe of local RFI environment

NRAO

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

LISTEN

BREAKTHROUGH

Next Steps

 Currently, we have data for 16 out of 27 cadences of the Galactic plane survey, about 12 hours of data

11 GP cadences and 9 GC cadences remain

- scintillation analysis
- Ultimate goal is to comment on the prevalance of scintillated technosignatures, as well as the prevalence of RFI that might pass the scintillation thresholds

Filter collected data using established ON-OFF search methods and perform

Summery

- We developed a scintillation analysis framework, with accompanying codebase
- **RFI** environment
- center / plane, which is well under way

• We can set statistical filter thresholds based on synthetic signals and the local

We've planned a survey to search for scintillated signals towards the Galactic

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

Thank you!

Extra Slides

What signals pass these thresholds?

Timescale fit ~ 2 s

Timescale fit ~ 60 s

Limitations from RFI analysis

- L and S bands in particular are very noisy
- Non-narrowband signals detected just because they are above the SNR threshold
- Difficult to apply a one-size-fits-all bounding box method
- Perhaps ML can help!

L band

Std. Dev.

Minimum

BERKELEY SETI RESEARCH CENTER

KS Statistic

Timescale Fit

C band

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

S/N = 10

	-
OC RFI	
L	
140	-

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

High standard deviation (RMS) signals are pulsed - or broadband

Quick way to produce synthetic data with asymptotic statistics

- (Cario & Nelson 1996) The ARTA random process matches:
 - Target intensity distribution
 - Target autocorrelation structure (with custom asymptotic precision)

1e5 n = $\Delta t_d = 30 \text{ s}$

Autocorrelation

Statistics using low number of synthetic samples

Std. Dev.

Minimum

KS Statistic

Timescale Fit

10 min "observation", 4.65 s

Estimating scattering strength

 NE2001 model estimates scattering parameters

 Assumes defaults of 1 GHz and 100 km/s – requires scaling!

 We use Monte Carlo sampling for unknown parameters

NE2001. I. A NEW MODEL FOR THE GALACTIC DISTRIBUTION OF FREE ELECTRONS AND ITS FLUCTUATIONS

J. M. Cordes Astronomy Department and NAIC, Cornell University, Ithaca, NY 14853 cordes@spacenet.tn.cornell.edu

T. JOSEPH W. LAZIO Naval Research Lab, Code 7213, Washington, D.C. 20375-5351 Joseph.Lazio@nrl.navy.mil

C-band (l, b) = (1, 0)

ISM Scattering & Scintillation

 Interaction between radio waves and free electrons in plasma

Pulsar observations paved the way

Parallels with laser speckle

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Cordes & Lazio 1991

Scattering and SETI research

DETECTION OF NARROW-BAND SIGNALS INTERSTELLAR SCATTERING EFFECTS

JAMES M. CORDES AND T. JOSEPH LAZIO National Astronomy and Ionosphere Center and Department of Astronomy, Cornell University, Ithaca, NY 14853 Received 1990 October 4; accepted 1991 January 15

- Many studies acknowledge scattering but attempt to avoid it
- Generally, SETI techniques aren't sensitive to detailed morphology

Noise, modulation, S/N

Stochastic effects are hard to describe

Bigger picture: research goals

Where and how should we look to target scintillated narrowband sources? Is this feasible and worth trying?

Develop a overall methodology, coding, and analysis framework

Can we detect scintillated narrowband technosignatures?

- 1. What scintillation timescales should we expect?
- 2. How can we probe asymptotic statistics?
- 3. Can we differentiate scintillated signals from existing RFI?

What would strongly scintillated signals look like?

- Asymptotic behavior:
 - Exponential intensity distribution
 - Approximately Gaussian autocorrelation, with characteristic timescale

Assuming 100% duty-cycle narrowband emission

Given a signal... is it scintillated?

- Create bounding box around narrowband signal
- Estimate noise-subtracted intensity time series, normalized to mean 1
- Compute "diagnostic statistics" that pertain to asymptotic behavior
 - E.g. standard deviation, Kolmogorov-Smirnoff statistic, fit to autocorrelation function

What would strongly scintillated signals look like?

- Expected asymptotic behavior:
- Exponential intensity distribution

 $p(I) \propto e^{-I/\langle I \rangle}$

 Near Gaussian autocorrelation, with characteristic timescale

$$\rho(\tau) \sim e^{-(\tau/\Delta t_d)^2}$$

Assuming 100% duty-cycle narrowband emission

Cordes & Lazio 1991; Cordes, Lazio, Sagan 1997

But what does the RFI environment look like?

Extra Slides x2
Plasma effects as a search filter for **SETI**

- Modern radio SETI involves detecting a vast number of signals and filtering likely candidates
- For a few reasons, most filters do not involve the effects on the signal itself
- We propose that in some cases, we can detect scintillation from the ISM in narrowband signals, which would heavily imply extrasolar origin

Smith et al. 2021

Methods

- Target 100% duty-cycle, narrowband transmitters
- Since scintillation is stochastic by definition, identify measurable statistics
- Estimate intensity time series from detected signals for analysis
- Use procedure on RFI in unlikely directions to probe the interference environment

Cordes & Lazio 1991; Cordes, Lazio, Sagan 1997

Diagnostic statistics

RFI And ysis

Standard Deviation

Kolmogorov-Smirnoff Statistic

Scintillation Timescale Fit

RFI Analysis

Standard Deviation

Minimum

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Kolmogorov-Smirnoff Statistic

Scintillation Timescale Fit

Developed a framework for scintillation analysis, with accompanying code

Because of RFI environment, higher frequencies are more amenable

• Looking forward: dedicated survey with custom resolution to search near the Galactic Center

Better extraction / classification methods may lead to improvements

Extra Slides

Candidate identification and differentation

Narrowband (vs. astrophysical sources)

• Non-zero drift rate (vs. RFI)

• Sky localization (vs. RFI)

Smith et al. 2021

Can we use astrophysical phenomena to discriminate technosignatures from RFI?

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

ESA

ISM Scattering & Scintillation

 Interaction between radio waves and free electrons in plasma

Pulsar observations paved the way

Parallels with laser speckle

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Cordes & Lazio 1991

Scattering and SETI research

DETECTION OF NARROW-BAND SIGNALS INTERSTELLAR SCATTERING EFFECTS

JAMES M. CORDES AND T. JOSEPH LAZIO National Astronomy and Ionosphere Center and Department of Astronomy, Cornell University, Ithaca, NY 14853 Received 1990 October 4; accepted 1991 January 15

- Many studies acknowledge scattering but attempt to avoid it
- Generally, SETI techniques aren't sensitive to detailed morphology

Noise, modulation, S/N

Stochastic effects are hard to describe

Bigger picture: research goals

Where and how should we look to target scintillated narrowband sources? Is this feasible and worth trying?

Develop a overall methodology, coding, and analysis framework

What would strongly scintillated signals look like?

Exponential intensity distribution

 $p(I) \propto e^{-I/\langle I \rangle}$

 Near Gaussian auto-correlation (ACF), with characteristic timescale

$$\rho(\tau) \sim e^{-(\tau/\Delta t_d)^2}$$

Assuming a 100% duty-cycle narrowband transmitter

Cordes & Lazio 1991; Cordes, Lazio, Sagan 1997

Can we detect scintillated narrowband technosignatures?

- 1. What scintillation timescales should we expect?
- 2. How can we probe asymptotic statistics?
- 3. Can we differentiate scintillated signals from existing RFI?

Estimating scattering strength

 NE2001 model estimates scattering parameters

 Assumes defaults of 1 GHz and 100 km/s – requires scaling!

 We use Monte Carlo sampling for unknown parameters

NE2001. I. A NEW MODEL FOR THE GALACTIC DISTRIBUTION OF FREE ELECTRONS AND ITS FLUCTUATIONS

J. M. Cordes Astronomy Department and NAIC, Cornell University, Ithaca, NY 14853 cordes@spacenet.tn.cornell.edu

T. Joseph W. Lazio Naval Research Lab, Code 7213, Washington, D.C. 20375-5351 Joseph.Lazio@nrl.navy.mil

C-band (l, b) = (1, 0)

Given a signal... is it scintillated?

Create bounding box around narrowband signal

• Estimate noise-subtracted intensity time series, normalized to mean 1

- Compute diagnostic statistics that pertain to asymptotic behavior
 - E.g. standard deviation, Kolmogorov-Smirnoff statistic, fit to autocorrelation function

Quick way to produce synthetic data with asymptotic statistics

- (Cario & Nelson 1996) The ARTA random process matches:
 - Target intensity distribution
 - Target autocorrelation structure (with custom asymptotic precision)

1e5 n = $\Delta t_d = 30 \text{ s}$

Autocorrelation

Statistics using low number of synthetic samples

Std. Dev.

Minimum

KS Statistic

Timescale Fit

10 min "observation", 4.65 s

But what does the RFI environment look like?

Diagnostic statistics

C band

Std. Dev.

Minimum

S/N = 25

KS Statistic

Timescale Fit

C band

Std. Dev.

Minimum

BERKELEY SETI RESEARCH CENTER

S/N = 25

KS Statistic

Timescale Fit

L band

Std. Dev.

Minimum

BERKELEY SETI RESEARCH CENTER

KS Statistic

Timescale Fit

High standard deviation (RMS) signals are pulsed - or broadband

What signals pass the threshold?

• At C-band, S/N > 25, 3 out of ILLO2 SETL BERKELEY, EL

Timescale fit ~ 2 s

Timescale fit ~ 60 s

Limitations from RFI analysis?

- L and S bands in particular are very noisy
- Non-narrowband signals detected just because they are above the SNR threshold
- Difficult to apply a one-size-fits-all bounding box method
- Perhaps ML can help!

Some examples

BERKELEY SETI RESEARCH CENTER

Time series ACF: ks=0.37 1.8 1.0 -25000 1.6 0.8 20000 1.4 0.6 12 15000 0.4 1.0 10000 0.2 0.8 5000 0.6 0.0 0 0.4 -0.2 100 120 120 20 40 60 80 20 0 60 80 100 0 Time series ACF: ks=0.3 2.5 1.0 - 8 0.8 2.0 0.6 - 6 1.5 0.4 0.2 1.0 - 4 0.0 0.5 -0.2 0.0 -0.4 100 120 100 120 0 20 40 60 80 0 20 40 60 80

Some more examples

Examples of diagnostic statistics

Statistic	Asymptotic Value (with no noise)	Target Distribution
Standard Deviation (RMS)		Intensity, exponential
Minimum	0	Intensity, exponential
Kolmogorov-Smirnoff statistic	0	Intensity, exponential
Autocorrelation lag	Variable	Autocorrelation, Gaussian
Least squares fit to autocorrelation	Variable	Autocorrelation, Gaussian

There are a number of constraints...

- Time resolution
- Integration time
- Signal brightness
- RFI environment

- Sufficiently resolve scintles
- Collect enough scintles, gain stability
- Compute accurate statistics embedded in noise
- Bad normalization, false narrowband detections, confounding modulation

Regions of ionized plasma

Ionosphere

Interplanetary Medium (IPM)

Interstellar Medium (ISM)

SETI.BERKELEY.EDU BREAKTHROUGHINIT

Next steps: a Galactic Center / Galactic Plane survey

 Target most promising sections of parameter space

 Survey of Galactic plane with interesting targets

Gaia DR3?

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Gaia

Density-based sampling

Modulating by the inverse square-law for detectability:

Depends on the assumptions made about transmission power and resources.

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

(l, b) = (1, 0)

GH

Selecting bounding boxes

- After experimentation with various methods, the final pipeline uses a combination of baseline fitting and peak detection to calculate the right size of frame to use
- The final bounds are created using a thresholding method, similar to PSRCHIVE
- Take the final bounded signal and integrate in the frequency direction to derive our raw time series – then we normalize to mean of 1 before calculating our scattering statistics

Threshold fit LISTEN

Scintillation maps around the GC at C-band

Median

Mode

10 s, 30 s, 60 s

Scintillation Timescale Throughout the Milky Way (d=1 kpc, V=10 km/s, 6 GHz)

Scintillation Timescale Throughout the Milky Way (d=2 kpc, V=10 km/s, 6 GHz)

 $^{\perp}1.9$

/ (deg)

-10.9 9.9 8.9 10[∆t_d (s)] -5.9 <u>o</u> 4.9

12.5

-11.4

10.3

9.2

8.1

7.0

-5.9

4.8

-3.7

⊥2.6

 $\log_{10}[\Delta t_d (s)]$

Scattering intensity

Ionosphere – weak

• IPM — mostly weak

• ISM – can be strong! $m_d \approx 1$

SETI.BERKELEY.EDU BREAKTHROUGHINIT

Setigen

- Python library for synthetic spectrogram and voltage data
- Specific focus on narrowband signal generation and injection

Setigen

- Python library for synthetic spectrogram and voltage data
- Specific focus on narrowband signal generation and injection

Synthetic complex voltage data

 Simple models of backend components, such as a polyphase filterbank

ComplexQuantizer → GUPPI RAW file (requantizer)

Applications of Setigen beyond my research

Injection — recovery testing

• ML dataset production (e.g. Kaggle)

Multibeam search surveys

• Development of software for the Allen Telescope Array

TIME

FREQUENCY -

ON	1			-	
OFF					
ON					-
OFF					
ON					
OFF					

Breakthrough Listen x Kaggle 2021

Inter-quartile

Media

BERKELEY SETI RESEARCH CENTER

C-band

(l, b) = (1, 0)

BREAKTHROUGH LISTEN

Monte Carlo-sampled timescales

L band

Density

Uniform

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

C band

LISTEN

Statistics at different bands

Band	Frequency (GHz)	Median (s)	IQR (s)	Mode (s)
LOFAR	0.110 - 0.240	0.22	0.14 - 0.41	0.14
	1.1 — 1.9	2.9	1.9 – 5.6	1.9
S	1.8 – 2.8	4.8	3.3 – 9.0	3.1
C	3.95 – 8	15	10 – 28	11
X	8 — 11.6	28	19 — 52	16

 $\Delta t_d \propto \nu^{6/5} v_T^{-1}$

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

(l, b) = (1, 0)

Density-based sampling

Cordes & Lazio 2002

(l, b) = (1, 0)

LISTEN

What would strongly scattered signals look like?

- Temporal scintillation
- Spectral broadening
- Pulse broadening
- Spectral de-correlation

What would strongly scattered signals look like?

Assuming a 100% duty-cycle narrowband transmitter

- Temporal scintillation
- Spectral broadening
- Pulse broadening
- Spectral de-correlation

Why is this worth looking into?

Astrophysical modulation as a filter for technosignature candidates

 Looking towards the Galactic Center is well motivated by SETI

 Could provide a framework for using more of the actual signals during narrowband analysis

We focus on so-called diffractive scintillations

• Electron density fluctuations give rise to phase fluctuations

Multi-path propagation

• Interference pattern with characteristic spatial and spectral scales

 Can lead to 100% intensity modulation on characteristic temporal scales Δt_d

Parameter space exploration of scattering parameters

- A priori, we do not know:
 - Sky direction
 - Frequency
 - Distance
 - Transverse velocity

Monte Carlo sampling.

- Sky direction
- Frequency
- Distance
- Transverse velocity

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

 $\Delta t_d \propto \nu^{6/5} v_T^{-1}$

- Chosen parameter
- Uniform sampling within chosen band
- Uniform or density based sampling
- Uniform sampling

Density-based sampling

Cordes & Lazio 2002

RESEARCH CENTER CMillan 2017, Gowanlock et al. 3971.867418454546007 BREAKINGOUTININGOUTININGIU

Ζ

LISTEN

Low sample regime

 Spread of values around the asymptotic "truth"

 Both correlated and uncorrelated samples within the same observation

• How can we evaluate this?

BREAKTHROUGH

Quick way to produce synthetic data with asymptotic statistics

- (Cario & Nelson 1996) The ARTA random process:
 - Matches a target intensity distribution
 - Matches a target autocorrelation structure (with custom asymptotic precision)

Fig. 1. Sample path of an ARTA process with exponential marginals and autocorrelations $\rho_1 = 0.9$ and $\rho_2 = 0.6$.

Cario & Nelson 1996

