Detecting ISM Scintillation in Narrowband Signals: A New Filter for Radio SETI

BREAKTHROUGH LISTEN

BRYAN BRZYCKI UNIVERSITY OF CALIFORNIA BERKELEY UCSD JOURNAL CLUB, OCTOBER 13, 2023

The Search for Extraterrestrial Intelligence (SETI)

 Modern radio SETI began in the 1960s Vast improvements and expansion in: Instantaneous bandwidth Sensitivity • Survey size Search strategies Searching for "technosignatures"

Where should we look?

How should we look? What makes for a convincing candidate?

• Narrowband vs. astrophysical sources

• Non-zero Doppler drift rate vs. radio frequency interference (RFI)

• Sky localization vs. RFI

Frequency

Can we use astrophysical phenomena as a filter to distinguish technosignatures from RFI?

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

ESA

Pulsar observations probe radio ISM plasma effects

Dispersion

Condon & Ransom 2016

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Scattering

Cordes & Lazio 1991

BREAKTHROUGH LISTEN

Pulsar observations probe radio ISM plasma effects

Dispersion

Condon & Ransom 2016

LISTEN

Diffractive scintillation in the ISM

- Electron density fluctuations in ionized plasma creates interference pattern
- Can lead to 100% intensity modulation, especially towards the Galactic center, with characteristic scintillation timescale Δt_d

Cordes 2002

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

Prior SETI research on scintillation

NARROW-BAND SIGNALS INTERSTELI TTERING

JAMES M. CORDES AND T. JOSEPH LAZIO National Astronomy and Ionosphere Center and Department of Astronomy, Cornell University, Ithaca, NY 14853 Received 1990 October 4; accepted 1991 January 15

- Many studies acknowledge scintillation but attempt to avoid it
- Generally, SETI techniques aren't sensitive to detailed morphology
- Stochastic effects are hard to describe

Why search for scintilation?

- A filter that directly implies extra-solar origin
- Well-suited for continuous or pulsed narrowband signals
- One of the best places to search for scintillation corresponds to one of the best places to look for ETI - the Galactic Center

What would strongly scintillated signals look like?

Assuming a 100% duty-cycle narrowband transmitter

Exponential intensity distribution $p(I) \propto e^{-I/\langle I \rangle}$

Near Gaussian auto-correlation (ACF)

What would strongly scintillated signals look like?

Assuming a 100% duty-cycle narrowband transmitter

• Exponential intensity distribution $p(I) \propto e^{-I/\langle I \rangle}$

• Near Gaussian auto-correlation (ACF) $\rho(\tau) \sim e^{-(\tau/\Delta t_d)^{5/3}}$

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Cordes 1986

BREAKTHROUGH LISTEN

Can we detect scintillated narrowband technosignatures?

- 1. How can we probe asymptotic statistics?
- 2. Can we differentiate scintillated signals from existing RFI?
- 3. How can we design a survey to search for scintillated technosignatures?

Can we detect scintillated narrowband technosignatures?

1. How can we probe asymptotic statistics?

2. Can we differentiate scintillated signals from existing RFI?

- 3. How can we design a survey to search for scintillated technosignatures?

How might we detect scintillation?

- Estimate intensity time series from signals detected with deDoppler methods
- Since scintillation is stochastic, identify measurable statistics that probe asymptotic behavior
- Would existing RFI modulation confound real scintillation?
 - Methods for creating synthetic scintillated intensities
 - Compare statistics of detected signals with those of synthetic scintillated signals

Set of diagnostic statistics

Statistic	Asymptotic Value (with no noise)	Data Type	Theoretical Behavior
Standard Deviation (RMS)		Intensity	Exponential
Minimum	0	Intensity	Exponential
Kolmogorov-Smirnoff statistic	0	Intensity	Exponential
Scintillation Timescale Fit with Least Squares	Variable	Autocorrelation	Near-Gaussian

Statistics using synthetic scintillated intensities (no noise)

Standard Deviation

BERKELEY SETI RESEARCH CENTER

Kolmogorov-Smirnoff Statistic

Scintillation Timescale Fit

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

Can we detect scintillated narrowband technosignatures?

1. How can we probe asymptotic statistics?

2. Can we differentiate scintillated signals from existing RFI?

3. How can we design a survey to search for scintillated technosignatures?

What does the RFI environment look like?

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

LISTEN

Diagnostic statistics

GBT RFI vs. injected synthetic scintillated signals

C band (4–8 GHz)

Standard Deviation

Minimum

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Kolmogorov-Smirnoff Statistic

Scintillation **Timescale Fit**

GBT RFI vs. injected synthetic scintillated signals

C band (4–8 GHz)

Standard Deviation

Minimum

Kolmogorov-Smirnoff Statistic

Scintillation **Timescale Fit**

GBT RFI vs. injected synthetic scintillated signals

L band (1–2 GHz)

Signals with high standard deviations are pulsed and/or broadband

Takeaways and limitations of RFI analysis

- C-band is promising!
- L and S bands in particular are very noisy (1 3 GHz)
- Non-narrowband signals are detected just because they are above the SNR threshold
- Difficult to apply a one-size-fits-all bounding box method
- Perhaps ML can help!

Can we detect scintillated narrowband technosignatures?

- 1. How can we probe asymptotic statistics?
- 2. Can we differentiate scintillated signals from existing RFI?

3. How can we design a survey to search for scintillated technosignatures?

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

Planning Galactic Center observations — Monte Carlo sims with NE2001

- Estimate scintillation timescales with NE2001 (Cordes & Lazio 2002) and scale with different sets of parameters
 - Galactic coordinates
 - Distance
 - Frequency
 - Transverse velocities
- Monte Carlo sample to estimate most probable scintillation timescales

(I, b) = (5, 0) at C-band

BREAKTHROUGH

LISTEN

Current observing plan for scintillation survey of the Galactic center

- ABAB cadences
- 10 minutes per observation, so each pointing gets 20 minutes total
- 2.5 s, 2.8 Hz resolution
- Start each observing session with single pointing of North Galactic Pole as probe of local RFI environment

NRAO

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

LISTEN

BREAKTHROUGH

Next Steps

• Currently, we have data for 16 out of 27 cadences of the Galactic plane survey, about 12 hours of data

11 Galactic plane and 9 Galactic center targets remain

- scintillation analysis
- Ultimate goal is to comment on the prevalance of scintillated technosignatures, as well as the prevalence of RFI that might pass the scintillation thresholds

Filter collected data using established ON-OFF search methods and perform

Summery

- We developed a scintillation analysis framework, with accompanying codebase (<u>github.com/bbrzycki/blscint</u>)
- **RFI environment**
- center & plane, which is well under way

• We can set statistical filter thresholds based on synthetic signals and the local

We've planned a survey to search for scintillated signals towards the Galactic

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

Extra Slides

Regions of ionized plasma

Ionosphere

Interplanetary Medium (IPM)

Interstellar Medium (ISM)

SETI.BERKELEY.EDU BREAKTHROUGHINIT

What would strongly scattered signals look like?

- Temporal scintillation
- Spectral broadening
- Pulse broadening
- Spectral de-correlation

What would strongly scattered signals look like?

Assuming a 100% duty-cycle narrowband transmitter

- Temporal scintillation
- Spectral broadening
- Pulse broadening
- Spectral de-correlation

What would strongly scattered signals look like?

Assuming a 100% duty-cycle narrowband transmitter

Cordes & Lazio 1991

- Temporal scintillation
- Spectral broadening
- ulse broadening
- de-correlation

INTERSTELLAR SCATTERING EFFECTS ON THE DETECTION OF NARROW-BAND SIGNALS

JAMES M. CORDES AND T. JOSEPH LAZIO National Astronomy and Ionosphere Center and Department of Astronomy, Cornell University, Ithaca, NY 14853 Received 1990 October 4; accepted 1991 January 15

SCINTILLATION-INDUCED INTERMITTENCY IN SETI

JAMES M. CORDES,^{1,2,3} T. JOSEPH W. LAZIO,^{1,2} AND CARL SAGAN^{1,3,4,5} Received 1996 May 15; accepted 1997 May 9

Showed that scattering can both help and hinder SETI

Developed asymptotic expressions for detectability

Cordes & Lazio 2002

McMillan 2017, Gowanlock et al. 2011, Carroll & Ostlie 2007

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH LISTEN

Cordes & Lazio 2002

McMillan 2017, Gowanlock et al. 2011, Carroll & Ostlie 2007

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH LISTEN

Cordes & Lazio 2002

McMillan 2017, Gowanlock et al. 2011, Carroll & Ostlie 2007

(l, b) = (1, 0)

Modulating by the inverse square-law for detectability:

Depends on the assumptions made about transmission power and resources.

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

(l, b) = (1, 0)

GH

Monte Carlo-sampled timescales L band

Weighted

Uniform

C band

Estimating scattering strength

• NE2001 model: the standard for estimating pulsar distances for a while

• Estimates scattering parameters

 Computes values assuming defaults of 1 GHz and 100 km/s – requires scaling!

$$\Delta t_d \propto \nu^{6/5} v_7$$

NE2001. I. A NEW MODEL FOR THE GALACTIC DISTRIBUTION OF FREE ELECTRONS AND ITS FLUCTUATIONS

J. M. Cordes

Astronomy Department and NAIC, Cornell University, Ithaca, NY 14853 cordes@spacenet.tn.cornell.edu

T. JOSEPH W. LAZIO Naval Research Lab, Code 7213, Washington, D.C. 20375-5351 Joseph.Lazio@nrl.navy.mil

Parameter space exploration of scattering parameters

- A priori, we do not know:
 - Sky direction
 - Frequency
 - Distance
 - Transverse velocity

Monte Carlo sampling!

- Sky direction
- Frequency
- Distance
- Transverse velocity

 $\Delta t_d \propto \nu^{6/5} v_T^{-1}$

- Chosen parameter
- Uniform sampling within chosen band
- Uniform or density based sampling
- Uniform sampling

Inter-quartile range

Median

C-band

(l, b) = (1, 0)

Inter-quartile range

Median

C-band

(l, b) = (1, 0)

Example: Statistics at different bands

Band	Frequency (GHz)	Median (s)	IQR (s)	Mode (s)
LOFAR	0.110 - 0.240	0.22	0.14 - 0.41	0.14
	1.1 – 1.9	2.9	1.9 – 5.6	1.9
S	1.8 – 2.8	4.8	3.3 – 9.0	3.1
C	3.95 – 8	15	10 – 28	11
X	8 — 11.6	28	19 – 52	16

 $\Delta t_d \propto \nu^{6/5} v_T^{-1}$

(l, b) = (1, 0)

Synthetic scintillation data: Autoregressive-to-anything (ARTA)

- The ARTA process generates random values that:
 - Match a target intensity distribution
 - Match a target autocorrelation structure

Sample path of an ARTA process with exponential marginals and autocorrelations $\rho_1 = 0.9$ and $\rho_2 = 0.6$.

Cario & Nelson 1996

There are a number of constraints...

- Time resolution
- Observation time
- Signal brightness
- RFI environment

- Sufficiently resolve scintles
- Collect enough scintles, gain stability
- Compute accurate statistics embedded in noise
- Bad normalization, false narrowband detections, confounding modulation

Low [time] sample regime

 Low number of samples causes measurement error – spread of values around the asymptotic "truth"

 Both correlated and uncorrelated samples within the same observation

• We can measure this using synthetic scintillated intensities!

BREAKTHROUGH

Example: n = 1e5 for $\Delta t_d = 30$ s with 4.6 s resolution

Intensity histogram

Some examples

Original

De-drifted

Intensity time series

Autocorrelation

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

LISTEN

Some more examples

Original

De-drifted

Intensity time series

Autocorrelation

GBT RFI vs. injected synthetic scintillated signals

C band (4–8 GHz)

Standard Deviation

Minimum

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

setigen (Public

Python library for generating and injecting artificial narrow-band signals into radio frequency data

೪ 12 Jupyter Notebook 🏠 23

Kolmogorov-Smirnoff Statistic

Scintillation **Timescale Fit**

BREAKTHROUGH

LISTEN

What signals pass the threshold? • At C-band, S/N > 25, 3 out of 1102

Timescale fit ~ 2 s

Timescale fit ~ 60 s

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

LISTEN

Current observing plan for scintillation survey of the Galactic center

• Galactic plane survey: 54 pointings, with || < 5 deg, |b| < 2 deg

Current observing plan for scintillation survey of the Galactic center

Galactic center survey: 19 pointings (following Gajjar et al. 2021)

C band

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

S/N = 10

	-
OC RFI	
L	
140	-

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

BREAKTHROUGH

Selecting bounding boxes

- After experimentation with various methods, the final pipeline uses a combination of baseline fitting and peak detection to calculate the right size of frame to use
- The final bounds are created using a thresholding method, similar to PSRCHIVE
- Take the final bounded signal and integrate in the frequency direction to derive our raw time series – then we normalize to mean of 1 before calculating our scattering statistics

Threshold fit LISTEN

Scintillation maps around the GC at C-band

Median

Mode

10 s, 30 s, 60 s

Scintillation Timescale Throughout the Milky Way (d=1 kpc, V=10 km/s, 6 GHz)

Scintillation Timescale Throughout the Milky Way (d=2 kpc, V=10 km/s, 6 GHz)

 $^{\perp}$ 1.9

/ (deg)

-10.9 9.9 8.9 10[∆t_d (s)] -5.9 <u>o</u> 4.9

12.5

-11.4

10.3

9.2

8.1

7.0

-5.9

4.8

-3.7

⊥2.6

 $\log_{10}[\Delta t_d (s)]$

My goal: develop search methods for SETI from both angles

 Machine learning and software tools to support more complex detections

 Investigate astrophysical effects imprinted on technosignatures themselves

Narrowband signal localization with machine learning

Standard deDoppler pipeline:

- Dim signals concealed by nearby bright signals
- Computationally expensive to search high drift rates

Small snippet of GBT data at C-band

Masking?

Synthetic training data

Normalization

Neural Network

Predicted locations

CKECWCYS

 Less accurate than deDoppler methods, but generally 20-40x faster

 Trained on ideal signals but still relatively robust

• For production use, would need to extend to variable number of signals

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Brzycki et BREAKTHRQUGH

Setigen

- Python library for synthetic spectrogram and voltage data
- Specific focus on narrowband signal generation and injection

Setigen

- Python library for synthetic spectrogram and voltage data
- Specific focus on narrowband signal generation and injection

Synthetic complex voltage data

 Simple models of backend components, such as a polyphase filterbank

ComplexQuantizer → GUPPI RAW file (requantizer)

Applications of Setigen beyond my research

Injection — recovery testing

ML dataset production (e.g. Kaggle)

Multibeam search surveys

 Development of software for the Allen Telescope Array

TIME

FREQUENCY -

ON		teityt	TT POP		-	
OFF						
ON						
OFF						
ON						
OFF						

Breakthrough Listen x Kaggle 2021

Scattering intensity

Ionosphere – weak

• IPM — mostly weak

• ISM – can be strong! $m_d \approx 1$

SETI.BERKELEY.EDU BREAKTHROUGHINIT

NARROW-BAND SIGNAL LOCALIZATION (BRZYCKI ET AL. 2020)

- With a means of simulating of can produce frames that wo "organically" using TurboSE
- Importantly, we can general synthetic data, and train a C
- predict 2 numbers per signal

• Localization of narrow-bandesegalets asrang and synthets signals, at 25 and ML problem because it's a relatively simple task;

NARROW-BAND SIGNAL LOCALIZATION BRZYCKI ET AL. 2020)

- Created two main datasets, samples and 24,000 test sam
 - One signal, at 0, 5, ..., 25
 - Two signals, one at 0, 5, . rate, and the other at 25 d to simulate "bright" RFI)
- of localizing multiple signals simultaneously

• The one signal dataset allows for direct comparison with 2 synthetic signals. TurboSETI; the two signal dataset tests the effectiveness

MODEL ARCHITECTURES

- Used convolutional neural networks, esp input data
- Created a "baseline" and a "final" mod performance:
 - Baseline model uses convolutional la fully connected layers
 - Final model includes residual connect convolutions instead of max pooling,
- In addition to training these models over we did alternate training over only 10 labeling these as "bright" models

LISTEN

RMSE (index units) = $1024 \times \sqrt{\frac{1}{n} \sum_{i}^{n} (y_i - \hat{y}_i)^2}$ DES GNAL RESULTS ON TEST DATA

models

RMSE (index units) = $1024 \times$

- Performance over two signal c than in the one signal case
- Even though we used ideal syr models failed to localize to ext
- Nevertheless, our two signal m so these results are still encouraging

$\sqrt{\frac{1}{n}\sum_{i}^{n}(y_{i}-\hat{y}_{i})^{2}}$ WO SIGNAL RESULTS ON TEST DATA

BREAKTHROUGH

LISTEN

Why radio?

- Low energy
- Low attenuation
- Produced by technology!

Noise Temperature (Kelvin)

Siemion et al. 2014

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

LISTEN

Detection basis for SETI searches

Raw signal detection

Candidate identification and differentiation (filtering)

Raw signal detection

Incoherent deDoppler (TurboSETI)

Energy detection

Machine learning (ML)

Lebofsky et al. 2019

Pulsar observations probe radio plasma effects

Dispersion

Scattering: scintillation and broadening

Parallels with optical laser speckle

Cordes & Lazio 1991

Goodman 1984

BREAKTHROUGH

LISTEN

Bigger picture: research goals

Where and how should we look to target scintillated narrowband sources? Is this feasible and worth trying?

 Develop a methodology and analysis framework for evaluating interesting signals and studies on a case-by-case basis

Diffractive scintillation in the ISM

- Electron density fluctuations in ionized plasma give rise to phase fluctuations
- Interference pattern at observer plane with characteristic spatial and spectral scales
- Can lead to 100% intensity modulation on characteristic temporal scales Δt_d , especially towards the Galactic center

Next steps: a Galactic Center / Galactic Plane survey

 Target most promising sections of parameter space

 Survey of Galactic plane with interesting targets

Gaia DR3?

SETI.BERKELEY.EDU BREAKTHROUGHINITIATIVES.ORG

Vuiu

