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HOW CAN WE BUILD ON EXISTING SEARCHES®

* TurboSETI
* Struggles in RFl-rich bands

* Can take a while as you increase
range of drift rates to search

400 600
Frequency bins (Hz)

Synthetic example data with a dim signal
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HOW CAN WE BUILD ON EXISTING SEARCHES®

* Current pipelines are built to search for
approximately linear signals — there
are weird ones out there!
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* How can we handle when they arise in
on-off cadences?

*Is there a way to search for these
directly?

1.59 0.0 -1.59
Relative Frequency [kHz] from 5946.784848 MHz

Example on-off cadence (Sheikh et al. 2020)
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LET’S TRY MACHINE LEARNING!
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* Major advances in machine ﬂ,-,,l.-..,;;_z- =
learning with tto i S SRR
earning with respect to image - :'ma Wesipwy

analysis

» Computer vision techniques are
good at classifying images based
on morphological features, and

S x S grid on input

finding high-level objects IIIIIE
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* So-called convolution neural Class probability map
networks (CNNs) are the name of o ol 2014
the game
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APPROACHING ML FOR NARROW-BAND SIGNALS

* To train neural networks, we need to have labeled datasets of some sort

* Especially for SETI use cases, it’s hard to put together such datasets only
from observations
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APPROACHING ML FOR NARROW-BAND SIGNALS
o v

e One solution is to turn to simulations!

* Created setigen, a Python module for making
synthetic narrow-band signals, which can be

directly inserted into observational data T
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* We've used setigen for ML experiments as I SR
well as injection recovery for signal search i '||u Lt e
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pipelines (like TurboSETI)! e
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github.com/bbrzycki/setigen

Top: synthetic scintillating signal.
Bottom: synthetic RFI signal.
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SIGNAL LOCALIZATION WITH ML (BRzYCKI ET AL. 2020)
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* TurboSETI struggles when multiple
signals are within a certain frequency
range
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* We can generate lots of relevant
labeled synthetic data, and train a

CNN to find these signals
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 Two main datasets:

W
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* One signal with random drift rate 200 400 600 800 1000

Frequency (samples)

Two SIQnals' one W"h. rcmdor.n drift Example of a frame with 2 synthetic signals, at 25 and
rate, and the other with O drift rate 15 dB.

(meant to simulate “bright” RFI)
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OVERALL TAKEWAYS

* ML predictions were generally less
accurate than TurboSETI, but they lalliAlhdea
were much faster (20-40x)

* Predictions were worse for the two

signal dataset, but reasonable for

SNR>10 (median errors in the 10s
of pixels, out of 1024)

* Ran predictions on complex RFI

. . . 200 400 600 3800
signals in real observational dataq, Frequency (px)

and found that our ML models still

: : : Observational data frame with real RFI signal, with ML
obtained reasonable localizations prediction dashed and TurboSETI localization dotted.
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ANOMALY DETECTION

* Find snippets of data different enough | Encoder o ecoder
from II.I‘\e reslll nput reconstruction

Compression
e Use CNN-based architecture called an ror s .
autoencoder, based on compression
Clnd reCOnSh'U Cting inpr imCIgeS — > Encoder Decoder

input reconstruction

* If the model struggles to reconstruct an [ compresi [
input, it's anomalous!

error-z-score = 3.18

Autoencoder schematic (Google Ai-Hub)
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PREDICTION-BASED ANOMALY DETECTION (ZHANG ET AL. 2019)

Actual Prediction

* Generative adversarial network
(GAN), similar to an autoencoder

* Train to predict next time steps

* Compare predictions to reality to
identify deviations

Prediction examples (Zhang et al. 2019)
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RADIO SIGNAL SEARCHES VIA SUPERVISED LEARNING
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* FRB detection (Zhang et al. 2018)

Frequency [GHZz]
(@)

* Simulate FRB pulses and inject in L s
sample observations to create a
labeled dataset

* Detected 72 new pulses from FR
121102 using the ML pipeline
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Time [ms] Time [ms]

Synthetic dispersed pulses (Zhang et al. 2018)
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SUPERVISED LEARNING - NEW DETECTION PROCEDURE®?

* Ongoing research: use astrophysical
effects like ISM scintillation and pulse

broadening to develop a ML-based
search strategy
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* Especially relevant for galactic center

surveys . .
1412.4 1412.6 1412.8 1413 1413.2 1413.4 1413.6
v (MHz)
Dynamic spectra of pulsar PSR 1933+16 (Cordes & Lazio 1991)
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Thank you!
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MODEL ARCHITECTURES

* Used convolutional neural networks, especially
suited for image input data

* Created a “baseline” and a “final” model, to
compare performance:

*Baseline model uses convolutional layers, max
pooling, and fully connected layers

* Final model includes residual connections, stride

2 convolutions instead of max pooling, and
batch normalization

* In addition to training these models over all input
training data, we did alternate training over only

10 - 25 dB signal frames, labeling these as “bright”
models

BERKELEY SETI

input: | (None, 32, 1024, 1)
input_1: InputLayer

(None, 32, 1024, 1)

conv2d 1: Conv2D (None, 32, 1024, 1)
_ (None, 30, 1022, 32)

COIle 2 C ) ' I : I ]One 30. ‘J ) 3 )
_2:L0Onvz
OUtput (N ne, A.: 8,, IOHO?‘ 3 )

input: | (None, 28, 1020, 32)
max_pooling2d_1: MaxPooling2D
(None, 14, 510, 32)

conv2d_3: Conv2D (None, 14, 510, 32)

nput: None, 12, 508, 32)
max_pooling2d_2: MaxPooling2D (
(None, 6, 254, 32)

conv2d_4: Conv2D (None, 6, 254, 32)
_ (None, 4, 252, 64)

input: | (None, 4, 252, 64)
max_pooling2d_3: MaxPooling2D -
(None, 2, 126, 64)

flatten_1: Flatten (None, 2, 126, 64)
_ (None, 16128)

e 1+ (None, 16128)
ense . cNnse
B (None, 64)

dense_2: Dense (None, 64)
- o 69

input: | (None, 64)
dropout_1: Dropout | TPt @Yone- 64) |
Nore,

dense_3: Dense (None, 64)
— (None, 4)
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input: | (None, 32, 1024, 2)
input_1: InputLayer
(None, 32, 1024, 2)

2 1 Comah (None, 32, 1024, 2)
convid_1: Lonvi
(None, 15, 511, 32)

24 2: Coma (None, 15, 511, 32)
convzad_Z: Lonve

(None, 15, 511, 32)

[(None, 15, 511, 32), (None, 15, 511, 32)]

input:
add_1: Add
(None, 15, 511, 32)

input: | (None, 15, 511, 32)
activation_1: Activation
(None, 15, 511, 32)

input: | (None, 15, 511, 32)
batch_normalization_1: BatchNormalization
(None, 15, 511, 32)

conv2d_3: Conv2D input: | (None, 15, 511, 32)
nvzd_o: nv<s
output: | (None, 7, 255, 32)

conv2d_4: Conv2D (None, 7, 255, 32)
T (None, 7, 255, 32)

input: | [(None, 7, 255, 32), (None, 7, 255, 32)]

add_2: Add
(None, 7, 255, 32)

. - 5
activation_2: Activation (None, 7, 255, 32)
(None, 7, 255, 32)

in ut: | (None, 7, 255, 32)
batch_normalization_2: BatchNormalization P .
(None, 7, 255, 32)

2d 5 ComvaD (None, 7, 255, 32)
conv2d_5: Conv2

(None, 3, 127, 64)

flatten_1: Flatten (Nore, 3, 127, 64)
T (None, 24384)

| LD (None, 24384)
dense_1: Dense
(None, 1024)

donse 2: D (None, 1024)
aense_2Z. cnse
(None, 1024)

; D (None, 1024)
ropout_1: Dropout
POt P (None, 1024)

e 3D (None, 1024)
cnse_J. cNnse
- (None, 4)
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1 Final Bright
1 TurboSETI Bright

RMSE (index units)
RMSE (index units)

B Baseline

[ Baseline Bright
1 Final

1 Final Bright

0 10 15 15 20
Signal Intensity (dB) Signal Intensity (dB)

Root mean squared error across different signal Root mean squared error across different signal
intensities, in pixels, for various neural network intensities, in pixels, compared to TurboSETI
architectures in the 1 signal case. performance. Only calculated for SNR > 10.
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SIGNAL LOCALIZATION IN SPECTROGRAMS
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model 1 model

B Baseline B Baseline

[ Baseline Bright [ Baseline Bright

1 Final 1 Final

[ 1 Final Bright [ 1 Final Bright

0 5 10 15 0 5 10 15
Signal Intensity (dB) Signal Intensity (dB)
Mean squared error across different signal intensities, Mean squared error across different signal intensities,
in pixels, for 1 signal case (Brzycki et al. 2020) in pixels, for 2 signal case (Brzycki et al. 2020)
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Baseline

BERKELEY SETI
RESEARCH CENTER

[(None, 32, 1024, 1)]

input_1: InputLayer
output: | [(None, 32, 1024, 1)]

input: (None, 32, 1024, 1)
output: [ (None, 30, 1022, 32)

2d 1: Conv2D (None, 30, 1022, 32)
convi - Conv2
_ (None, 28, 1020, 32)

conv2d: Conv2D

input: | (None, 28, 1020, 32)
max_pooling2d: MaxPooling2D -
(None, 14, 510, 32)

conv2d_2: Conv2D (None, 14, 510, 32)
_ (None, 12, 508, 32)

nput: None, 12, 508, 32)
max_pooling2d_1: MaxPooling2D (
(None, 6, 254, 32)

 Comvah (None, 6, 254, 32)
onv

conv2d_3 -
output: | (None, 4, 252, 64)

(None, 4, 252, 64)

max_pooling2d_2: MaxPooling2D
—POotnE=t- © (None, 2, 126, 64)

et Flat (None, 2, 126, 64)
atten: atten
(None, 16128)

ene D (None, 16128)
€nse:. ense
o

dense_1: Dense (None, 64)
_ (None, 64)

input: | (None, 64)
dropout: Dropout
(o, 65

input: | (None, 64)
dense. 2 Denge |_1MPUG_| (Nore. 64) |
o

Localization Models

input: [(None, 32, 1024, 2)]
input_1: InputLayer
[(None, 32, 1024, 2)]

o Coma (None, 32, 1024, 2)
conv.id: onvi
(None, 15, 511, 32)

1 (None, 15, 511, 32)
conv.i N onv.
- (None, 15, 511, 32)

input: | [(None, 15, 511, 32), (None, 15, 511, 32)]

add: Add -
(None, 15, 511, 32)

input: None, 15, 511, 32
activation: Activation ¢ )
(None, 15, 511, 32)

input (None, 15, 511, 32)

batch_normalization: BatchNormalization -
(None, 15, 511, 32)

input: | (None, 15, 511, 32)
output: | (None, 7, 255, 32)

24 3 Coma (None, 7, 255, 32)
convad_s: Lony.
(None, 7, 255, 32)

dd_1: Add [(None, 7, 255, 32), (None, 7, 255, 32)]
al

(None, 7, 255, 32)

o o input: | (None, 7, 255, 32)
activation_1: Activation -
(None, 7, 255, 32)

(None, 7, 255, 32)

batch_normalization_1: BatchNormalization
(None, 7, 255, 32)

7
conv2d_4: Conv”D (Nane, 7, 255, 32)
output (None 127

flatten: Flatten (None, 3, 127, 64)

(None, 24384)

e I (None, 24384)
cnse: CNSC
(None, 64)

dense_1: Dense (None, 64)
— (None, 2048)

: . 2\,
dropout: Dropout (Nore, 2048)
(None, 2048)

oo 2D (None, 2048)
CNSC_. CNnsSec
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LET’S TRY MACHINE LEARNING!

* Major advances in machine
learning with respect to image

analysis

» Computer vision techniques are
good at classifying images based
on morphological features, and
finding high-level objects (LT

400 600 800
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* Potentially allow us to localize

multiple signals In one ShOi’, Simple example of ML classification (between
reducing com pUi'ClﬁOI‘ICII costs noise, constant intensity, or pulsed) with a
synthetic signal
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SEARCHING FOR ETI: RADIO TECHNOSIGNATURES

* We can visualize BL radio data as

waterfall plots (spectrograms), of
intensity as a function of frequency

and time

HIP43223
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* Narrow-band signals generally
appear as straight-line paths over
time, can be sloped from Doppler
acceleration

-0.0004 -0.0003 -0.0002 -0.0001 0.0000 0.0001
Frequency [MHz] +8.16746e3

* Most of what we see is interference
(RFI), but perhaps some of these Real narrow-band signal
signals are technosignatures!
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TURBOSETI: STANDARD DEDOPPLER ALGORITHM

* The standard signal search method at BL is TurboSETI, a tree deDoppler
algorithm

* Searches frequencies and drift rates (slopes) by integrating over time and
finding combinations that maximize SNR

* For each statistically significant signal, ultimately yields a position in starting
frequency and Doppler drift rate

* Efficient; eliminates redundant calculations using trees
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HOW TO DISTINGUISH FROM HUMAN RFI?

HIP 54677 v=0.039 Hzs™!

* ABACAD / on-off observing cadences

ts]

* If a signal can be localized in the sky
over the observing period, it’s unlikely
to be anthropogenic!
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75.0 0.0 -75.0
Relative Frequency [Hz] from 1435.942708 MHz

(a) HIP54677

Example ABACAD cadence (Price et al. 2020)
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